Skip to main content

A Test::Class gotcha

I'm working on a project that involves building a prototype application in Perl. I've made extensive use of Perl's OO features and have a collection of classes that implement the mathematical calculations necessary to drive the web site running the application. Naturally, as I've been building the classes I've been building a unit test suite.

Since Test::Class is the closest thing Perl has to junit or cppunit I'm using it to test all the class methods in my Perl classes. Everything was looking good until I told the guy writing the server to integrate with my code. His code died with an error like this:
Can't locate object method "new" via package "Class::A" (perhaps you
forgot to load "Class::A" at Class/B.pm line 147.
Taking a quick look inside Class::B revealed that it did try to create a new Class::A object and that, sure enough, there was no use Class::A; anywhere in Class::B. Easy enough bug to fix, but what left me scratching my head was why the unit test suite didn't show this.

For each class I have an equivalent test class (so there's Class::A::Test and Class::B::Test) which are loaded using a .t file which in turn is loaded with prove. The test classes all use Test::Class.

The classes are tested with a Makefile that does the following:
test:
@prove classes.t
And classes.t consists of:
use strict;
use warnings;

use Class::A::Test;
use Class::B::Test;

Test::Class->runtest;
Since the test suite for Class::A does a use Class::A; and the test suite for Class::B does a use Class::B; and the two test suites are loaded using use in classes.t, both Class::A and Class::B are loaded before running the tests. This means that the fact that use Class::A; was missing from Class::B is masked in the test suite.

The solution is to have two .t files one for each class so that only the class being tested is loaded. So I dumped classes.t and created class_a.t and class_b.t as follows:
use strict;
use warnings;

use Class::A::Test;

Test::Class->runtest;
and
use strict;
use warnings;

use Class::B::Test;

Test::Class->runtest;
and the Makefile is changed to do:
test:
@prove class_a.t class_b.t
This now works correctly. The missing use Class::A; causes a fatal error in the test suite.

Comments

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it: Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name. There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly. What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message: Our system is unable to process last names that contain non-letters, please replace them with spaces. Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands . They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0 image by Shinji I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring): The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30). The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {     float m = (360-30*float(h))*2/13;     int s = round(60*(m-floor(m)));     int col = h%6;     int row = floor(h/6);     draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1),

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator: From flickr Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press? Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me". Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of