Skip to main content

What Makefile am I in?

A common request when using GNU Make is: "Is there a way to find the name and path of the current Makefile?". By 'current' people usually mean that Makefile that GNU Make is currently parsing. There's no built-in way to quickly get the answer, but there is a way using the GNU Make variable MAKEFILE_LIST.

MAKEFILE_LIST (documented in the manual here) is the list of Makefiles currently loaded or included. Each time a Makefile is loaded or included the variable is appended. The paths and names in the variable are relative to the current working directory (where GNU Make was started or where it moved to with the -C or --directory option). The current working directory is stored in the CURDIR variable.

So you can quite easily define a GNU Make function (let's call it where-am-i) that will return the current Makefile (it uses $(word) to get the last Makefile name from the list):
where-am-i = $(CURDIR)/$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))

then whenever you want to find out the full path to the current Makefile write the following at the top of the Makefile (the 'at the top' part is important because any include statement in the Makefile will change the value of MAKEFILE_LIST so you want to grab the location of the current Makefile right at the top):
THIS_MAKEFILE := $(call where-am-i)

Example:

Here's Makefile
where-am-i = $(CURDIR)/$(word ($words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)

include foo/Makefile

foo/Makefile contains:
THIS_MAKEFILE := $(call where-am-i)
$(warning $(THIS_MAKEFILE))

include foo/bar/Makefile


foo/bar/Makefile contains:
THIS_MAKEFILE := $(call where-am-i)
$(warning $(THIS_MAKEFILE))

Running this on my machine (with the first Makefile in /tmp) gives the output:

foo/Makefile:2: /tmp/foo/Makefile
foo/bar/Makefile:2: /tmp/foo/bar/Makefile

Comments

Mad Scientist said…
Starting in GNU make 3.81, you can use $(lastword $(MAKEFILE_LIST)) instead of $(word ($words $(MAKEFILE_LIST)),$(MAKEFILE_LIST).
Grokon said…
Also, better read

where-am-i = $(CURDIR)/$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)

than

where-am-i = $(CURDIR)/$(word ($words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)

(parenthesis for words command is badly placed)
Anonymous said…
it will not work after nested includes

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it: Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name. There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly. What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message: Our system is unable to process last names that contain non-letters, please replace them with spaces. Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands . They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0 image by Shinji I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring): The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30). The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {     float m = (360-30*float(h))*2/13;     int s = round(60*(m-floor(m)));     int col = h%6;     int row = floor(h/6);     draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1),

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator: From flickr Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press? Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me". Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of