Skip to main content

Introducing Usman's Law

Back at Electric Cloud I worked with a smart guy named Usman Muzaffar. As part of his job he spent a lot of time dealing with our customers, many of whom used GNU Make other other Make tools to build their software.

One of the constant problems that Usman encountered was that most people had no way to get back to a truly clean build. No matter what they'd put in place for doing a totally scratch, clean build it was hard for everyone because their process often accidentally ommitted to delete something.

I've observed this problem in my own code. Like many people I have a 'make clean' option which deletes all the output files: in my case by rm -rfing an obj directory:

.PHONY: clean
clean:
@rm -rf $(OUT)/*
@$(MAKE_DIRECTORIES)

And I make sure that generated things only go under $(OUT). But it's easy to screw up. Consider a program like yacc or bison which'll create temporary source code files in the same place as the source code being analyzed. The truth is you have to be very careful to ensure that everything goes in one deletable place. (Not to mention the difficulties involved if the Makefile output different versions of objects for, say, different processor targets or platforms).

That leads me to Usman's Law: make clean doesn't.

Live by it and you'll be on the look out for poorly coded Makefiles that leave generated files in places they should not.

Comments

Barry Kelly said…
I think the key is to tie your cleaning to your source control system. Clean should delete everything that's not checked in.
Amber said…
Indeed, `git clean -dfx .` does the job nicely. I'll leave `git reset --hard` for manual interventions :)

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it: Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name. There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly. What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message: Our system is unable to process last names that contain non-letters, please replace them with spaces. Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands . They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0 image by Shinji I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring): The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30). The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {     float m = (360-30*float(h))*2/13;     int s = round(60*(m-floor(m)));     int col = h%6;     int row = floor(h/6);     draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1),

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator: From flickr Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press? Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me". Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of