Skip to main content

GAGA-1: The Capsule

The other thing that I did over the weekend was some initial work on the capsule. It consists of an expanded polystyrene box from Ferribox. Specifically, the XPS-2 which is a 245mm cube with an interior 150mm cube (i.e. very thick walls!) and weighs 200g (I'll dedicate another post to the weight budget but the whole thing needs to weigh less than 1kg). It has a fitted lid with a lip to keep it in place. Here's what it looks like:


A quick sanity check of space inside shows that the cube will easily contain the recovery GPS (bottom right), main flight computer (top right) and camera (left). Clearly I'm not showing all the wiring, antennae, probes and power, but there's plenty of room:


I plan to paint the capsule (with non-solvent based paint--those eat polystyrene) a very bright colour (probably fluorescent yellow) for easy recovery when it lands. The capsule will be attached to the balloon/parachute/radar reflector assembly by some nice nautical rope at each of the four corners. I have some strong, light-weight rope like this:


Since the stratosphere is at -55C there's clearly some temperature change to be worried about, hence the insulated box. Like everything else in GAGA-1 I've been testing and this weekend I did a rough and ready test of expected internal temperatures by abusing physics wildly and using my home freezer.


Here's the physics abuse: suppose the capsule is launched at ground level at 20C and rises at a constant rate to an altitude where the temperature is -55C and that the temperature gradient between ground and sky is constant then the average temperature encountered is (20 + -55) / 2 = -17.5C. Convenientely my freezer is at -18C so I decided to shove the box in the freezer for two hours to see what happens. Inside the box was a digital thermometer transmitting the temperature to an external monitor. I wrote down the temperature every 15 minutes.

Here's a chart of the actual temperatures (green) and the predicted temperature trend using Newton's Law of Cooling (red). X-axis is elapsed time in minutes, Y-axis is internal temperature in C.


Given a maximum flight time of 3 hours the prediction would be for the internal temperature to drop to somewhere close to -15C. That's acceptable.

As well as abusing physics this calculation ignores two other pertinent facts:

1. There's actually a source of heat inside the capsule: the electronics. The camera, GPS and radio transmitter all heat up while operating so there will be some internal warming.

2. The box won't be completely sealed as holes will be pierced for the four antennae and the camera lens.

Will be interesting to see how the temperature really drops on the day.

Comments

Anonymous said…
Cool stuff. Some friends of mine are going through the same problems.

See http://spacebits.eu/

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it:


Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name.

There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly.

What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message:

Our system is unable to process last names that contain non-letters, please replace them with spaces.

Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your last name …

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands. They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0image by Shinji
I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring):



The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30).
The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {
    float m = (360-30*float(h))*2/13;
    int s = round(60*(m-floor(m)));
    int col = h%6;
    int row = floor(h/6);
    draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1), r, h, floor(m…

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator:


From flickr

Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press?

Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me".

Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of informati…