Skip to main content

GAGA-1: Capsule insulation and antenna mounting

A bit of physical stuff on GAGA-1 this weekend after the Recovery Computer software last time. I'd previously painted the capsule for high visibility, but hadn't started cutting it or sticking on parts. After the successful test of the Recovery Computer it's time to put some bits on the box!


The three antennae visible on the box (as with the other components) are hot glued in place. I pierced holes in the box using a long metal skewer and a chop stick.

Here's a close up of the top of the capsule.


The top two antennae are for the two GPS modules (one in the Flight Computer and the other in the Recovery Computer). The long thin antenna is for the GSM connection that's part of the Recovery Computer.

The other two parts are a small red straw and a large black straw. The small red straw is simply there to allow the pressure to equalize between the inside and the outside of the capsule. Since the pressure is very low in the stratosphere it would be dangerous to send the box up completely sealed.

The black straw is sealed at the end with hot glue and will be where the external temperature sensor is placed.

I've further insulated the box by lining the interior with sheets of space blanket. This reflects almost all the heat generated inside the box (by the electronics) and should help keep things warm.


This was very fiddly to do as the space blanket material is very thin. I cut sheets out using a stencil and glued them in place. Placing my hand in the box I can feel warmth: the reflected warmth of my own hand.



Finally, here's an interior shot of the lid of the capsule showing where the cables for the antennae and straws poke through.

Comments

Unknown said…
Greetings John.

Although the insulation on the inner surface of the lid will help this somewhat anyway, you may improve the GPS signal to noise ratio reaching the antennas by placing a strip of foil directly underneath them to act as a ground plane. It is especially helpful to have them shielded from the relatively high strength EMI sources inside the box, like the telit module.

Whilst the antennas can see plenty of sky, the GPS engine's state estimators tend to have a strong prior on you being at ground level, so you really do need a good SNR to give more confidence to the observation.

All looking good!

Ed
CUSF
Unknown said…
This comment has been removed by the author.

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it:


Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name.

There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly.

What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message:

Our system is unable to process last names that contain non-letters, please replace them with spaces.

Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your last name …

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands. They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0image by Shinji
I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring):



The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30).
The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {
    float m = (360-30*float(h))*2/13;
    int s = round(60*(m-floor(m)));
    int col = h%6;
    int row = floor(h/6);
    draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1), r, h, floor(m…

Importing an existing SSL key/certificate pair into a Java keystore

I'm writing this blog post in case anyone else has to Google that. In Java 6 keytool has been improved so that it now becomes possible to import an existing key and certificate (say one you generated outside of the Java world) into a keystore.

You need: Java 6 and openssl.

1. Suppose you have a certificate and key in PEM format. The key is named host.key and the certificate host.crt.

2. The first step is to convert them into a single PKCS12 file using the command: openssl pkcs12 -export -in host.crt -inkey host.key > host.p12. You will be asked for various passwords (the password to access the key (if set) and then the password for the PKCS12 file being created).

3. Then import the PKCS12 file into a keystore using the command: keytool -importkeystore -srckeystore host.p12 -destkeystore host.jks -srcstoretype pkcs12. You now have a keystore named host.jks containing the certificate/key you need.

For the sake of completeness here's the output of a full session I performe…