Skip to main content

My BBC Micro Model B and a plume of acrid smoke

So, after yesterday's post about The Demon Machine I decided it would be fun to play around with the BBC Micro Model B and so I plugged it in and powered up. The familiar two-tone boot sound played and the machine was on.

About 15 minutes after power up there was a fizzing, popping sound from the computer and I ran to cut the power. Too late! A plume of blue/grey acrid smoke poured out of the left hand side of the machine right by the power supply.

I cut the power and moved the machine away from anything that might burn quickly and waited for the smoke to stop. It quickly dispersed and so I did the only thing a self respecting software engineer would do... I decided to turn it back on again.

But not without opening the power supply so I could take a look inside while it was running. Here's the PSU open after the fire:

Warning. I don't recommend that you do this sort of thing yourself. There are high voltages there, plus a bunch of electrolytic capacitors that can do nasty things if they feel like it. I was doing this while wearing my safety glasses.

You'll notice that there doesn't seem to be anything burnt in the supply and when I powered on the machine worked perfectly. Close examination shows that one of the capacitors used for power supply filtering had cracked open and burnt up.

If you look carefully you can see the cracking on the case of the capacitor and fresh capacitor juice running across the circuit board (most visible on the top photograph). A quick Google tells me that this is one of the most common failures on the BBC Micro power supply and easily repaired.

It's interesting to note that the capacitor used is rated by safety agencies because of the potential for failure leading to a short at mains potential and the metallized film is designed to self heal or fail safely. The device is also meant to fail safely at a peak potential of 2.5kV without burning with a flame.
EN132400 (IEC384-14): Active Flammability

The capacitor under test is connected to rated voltage through a transformer and filter. 20 transients are then introduced across the capacitor at random intervals while rated voltage remains applied. The amplitude of the transient is dependent on the class of capacitor. The capacitor may not flame during this test.
Not often you get to see an international safety standard take effect.

Here's the power supply circuit diagram.

The dead capacitor is C1 which sits right across the mains power input. Looks like I'll be getting the soldering iron out once the replacement part arrives.

Comments

Anonymous said…
That's a pretty common failure mode of electrolytic capacitors that have been unused for a long period of time.

One solution is to slowly increase the voltage on them over a period of time, to let them reform.
James said…
That exact same thing has just happened to me! The room stinks of dead electronics now.

Soldering iron time for me too!
James said…
That exact same thing has just happened to me! The room stinks of dead electronics now.

Soldering iron time for me too!
Unknown said…
Hi there I decided to take out my bbc micro b a friend gave to me. And exactly the same thing as happened to mine. I heard this crack, pop and fizzle couldn't for the life of me think what it was. Something told me it might be the computer so I felt it and it was quiet warm. Suddenly I could smell this acrid smell and I saw smokke was rising up from the same spot as you mentioned. So I unplugged everything and it now sits in it's polystyrene tray never to be used again.

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it:


Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name.

There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly.

What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message:

Our system is unable to process last names that contain non-letters, please replace them with spaces.

Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your last name …

Importing an existing SSL key/certificate pair into a Java keystore

I'm writing this blog post in case anyone else has to Google that. In Java 6 keytool has been improved so that it now becomes possible to import an existing key and certificate (say one you generated outside of the Java world) into a keystore.

You need: Java 6 and openssl.

1. Suppose you have a certificate and key in PEM format. The key is named host.key and the certificate host.crt.

2. The first step is to convert them into a single PKCS12 file using the command: openssl pkcs12 -export -in host.crt -inkey host.key > host.p12. You will be asked for various passwords (the password to access the key (if set) and then the password for the PKCS12 file being created).

3. Then import the PKCS12 file into a keystore using the command: keytool -importkeystore -srckeystore host.p12 -destkeystore host.jks -srcstoretype pkcs12. You now have a keystore named host.jks containing the certificate/key you need.

For the sake of completeness here's the output of a full session I performe…

More fun with toys: the Ikea LILLABO Train Set

As further proof of my unsuitability to be a child minder (see previous post) I found myself playing with an Ikea LILLABO 20-piece basic set train.


The train set has 16 pieces of track (12 curves, two straight pieces and a two part bridge) and 4 pieces of train. What I wondered was... how many possible looping train tracks can be made using all 16 pieces?

The answer is... 9. Here's a picture of the 9 different layouts.


The picture was generated using a little program written in Processing. The bridge is red, the straight pieces are green and the curves are blue or magenta depending on whether they are oriented clockwise or anticlockwise. The curved pieces can be oriented in either way.

To generate those layouts I wrote a small program which runs through all the possible layouts and determines which form a loop. The program eliminates duplicate layouts (such as those that are mirror images of each other).

It outputs a list of instructions for building loops. These instructions con…