Skip to main content

A simple illustration of the use of goroutines and channels in Google Go

For a long time I've been meaning to spend some quality time with Google Go and I finally have the chance. For the little home project I'm working on I needed a way to generate unique IDs. In Go there's a really nice and simple way of doing this: assign a single goroutine as an ID generator and use a channel as the way to grab a new ID.

Here's the code:
    idMaker := make(chan string)

    go func() {
        var counter int64 = 0
        for {
            idMaker <- fmt.Sprintf("%x", counter)
            counter++
        }
    } ()
The first line makes a channel that will be used to communicate strings. In this case, I'd decided to have unique string IDs.

Then there's a go function (in this case an anonymous function) that contains a 64 bit integer counter that is incremented every time an ID is generated. When an ID is generated it is formatted as a hex number and made available on the channel. It just loops around forever providing IDs and only updating the counter when an ID has been used.

Any other part of the program can grab an ID like this:
    id := <-idMaker
Because reading from a channel is atomic and only one part of the program can read from the channel at once this eliminates any headaches about threads or processes needing to share some unique ID generating code. In fact, multiple goroutines can use exactly the same channel to get unique IDs trivially.

This works because Google Go takes its channel synchronization idea from CSP where communication is how synchronization is done. There's no need for any sort of locking around the var counter because it only gets updated in one place (inside the goroutine) and it only gets updated when its value has been consumed by reading from the channel.

Comments

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it: Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name. There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly. What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message: Our system is unable to process last names that contain non-letters, please replace them with spaces. Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands . They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0 image by Shinji I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring): The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30). The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {     float m = (360-30*float(h))*2/13;     int s = round(60*(m-floor(m)));     int col = h%6;     int row = floor(h/6);     draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1),

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator: From flickr Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press? Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me". Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of