Skip to main content

A simple illustration of the use of goroutines and channels in Google Go

For a long time I've been meaning to spend some quality time with Google Go and I finally have the chance. For the little home project I'm working on I needed a way to generate unique IDs. In Go there's a really nice and simple way of doing this: assign a single goroutine as an ID generator and use a channel as the way to grab a new ID.

Here's the code:
    idMaker := make(chan string)

    go func() {
        var counter int64 = 0
        for {
            idMaker <- fmt.Sprintf("%x", counter)
            counter++
        }
    } ()
The first line makes a channel that will be used to communicate strings. In this case, I'd decided to have unique string IDs.

Then there's a go function (in this case an anonymous function) that contains a 64 bit integer counter that is incremented every time an ID is generated. When an ID is generated it is formatted as a hex number and made available on the channel. It just loops around forever providing IDs and only updating the counter when an ID has been used.

Any other part of the program can grab an ID like this:
    id := <-idMaker
Because reading from a channel is atomic and only one part of the program can read from the channel at once this eliminates any headaches about threads or processes needing to share some unique ID generating code. In fact, multiple goroutines can use exactly the same channel to get unique IDs trivially.

This works because Google Go takes its channel synchronization idea from CSP where communication is how synchronization is done. There's no need for any sort of locking around the var counter because it only gets updated in one place (inside the goroutine) and it only gets updated when its value has been consumed by reading from the channel.

Comments

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it:


Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name.

There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly.

What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message:

Our system is unable to process last names that contain non-letters, please replace them with spaces.

Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your last name …

Importing an existing SSL key/certificate pair into a Java keystore

I'm writing this blog post in case anyone else has to Google that. In Java 6 keytool has been improved so that it now becomes possible to import an existing key and certificate (say one you generated outside of the Java world) into a keystore.

You need: Java 6 and openssl.

1. Suppose you have a certificate and key in PEM format. The key is named host.key and the certificate host.crt.

2. The first step is to convert them into a single PKCS12 file using the command: openssl pkcs12 -export -in host.crt -inkey host.key > host.p12. You will be asked for various passwords (the password to access the key (if set) and then the password for the PKCS12 file being created).

3. Then import the PKCS12 file into a keystore using the command: keytool -importkeystore -srckeystore host.p12 -destkeystore host.jks -srcstoretype pkcs12. You now have a keystore named host.jks containing the certificate/key you need.

For the sake of completeness here's the output of a full session I performe…

More fun with toys: the Ikea LILLABO Train Set

As further proof of my unsuitability to be a child minder (see previous post) I found myself playing with an Ikea LILLABO 20-piece basic set train.


The train set has 16 pieces of track (12 curves, two straight pieces and a two part bridge) and 4 pieces of train. What I wondered was... how many possible looping train tracks can be made using all 16 pieces?

The answer is... 9. Here's a picture of the 9 different layouts.


The picture was generated using a little program written in Processing. The bridge is red, the straight pieces are green and the curves are blue or magenta depending on whether they are oriented clockwise or anticlockwise. The curved pieces can be oriented in either way.

To generate those layouts I wrote a small program which runs through all the possible layouts and determines which form a loop. The program eliminates duplicate layouts (such as those that are mirror images of each other).

It outputs a list of instructions for building loops. These instructions con…