Skip to main content

International Object Sizing Tool

I often take pictures of objects for this blog when I'm making stuff (such as the Cansole or Home-made 7x7 display) and one constant problem is scale. It's hard for people to know what size the objects are. For example, here's a small HD video camera that I'm planning to use on GAGA-2. This shot shows the camera with its insides out:

Tiny, but how small?

To solve the problem I've created the International Object Sizing Tool that can be photographed alongside an object to give an idea of scale. It has five different ways of showing the size of the object: three common coins, a credit card and centimeter and inch scales. Here it is:

The entire thing is credit card sized (itself an international standard) and I've included the Visa logo and a fake card number and name so that you can recognize it as a credit card sized object.

There's an inches scale on the left, a centimeters scale on the top and three correctly scaled coins: a one Euro, a US quarter and a British Pound.

I made the image in OmniGraffle and printed it out and then stuck it to the back of an old credit card (actually an old airline mileage card since it wasn't embossed) that I'd sanded down.

So, how small is that HD video camera?

If you want to make your own one of these, the PDF is here.

Comments

Anonymous said…
Useful. I like giving an indication of the size in the text as well, but you need to take care with the units. I once submitted a paper with a photo caption along the lines of " is 70cm along each edge, with a Euro coin shown for scale." Unfortunately, I meant 70 millimetres, and one of the reviewers came back with the comment "No wonder the British rejected the Euro - the change wouldn't fit in their pockets."
Pantaz said…
Nice. Thanks for sharing this.

I typically just use a ruler, or machinist's scale alongside what I'm photographing. Your card is probably better for quick visual impact.

One odd thing -- why is the 3cm hash mark bent/angled?

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it:


Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name.

There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly.

What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message:

Our system is unable to process last names that contain non-letters, please replace them with spaces.

Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your last name …

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands. They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0image by Shinji
I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring):



The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30).
The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {
    float m = (360-30*float(h))*2/13;
    int s = round(60*(m-floor(m)));
    int col = h%6;
    int row = floor(h/6);
    draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1), r, h, floor(m…

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator:


From flickr

Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press?

Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me".

Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of informati…