Skip to main content

Tempio Voltiano

At the bottom tip of Lake Como one of the most (if not the) most over-the-top memorials to a scientist is found sitting on the edge of the lake. The Tempio Voltiano is a temple built to commemorate the Italian scientist Alessandro Volta (who, amongst other things, invented the battery). Built in 1927 the temple depicts Volta as a classical figure. In central Como there's a statue of Volta (on the Piazza Alessandro Volta) with the scientist draped in robes as if he were a figure from the Roman era.

The temple itself continues the theme, with statues representing science (on the left of the entrance) and the Roman goddess Fides (Goddess of trust).

And the interior is similarly grand with an inlaid floor of marble, alabaster and other stones. The circular  layout follows the progression of science that Volta worked from the left to right with the dates engraved in the stonework.

The actual exhibition is a little disappointing. In 1899 Como put on an enormous exhibition celebrating the 100 year anniversary of the Volta's invention of the battery. A massive fire broke out and many of Volta's original instruments and creations (including his batteries) were destroyed. The temple contains those artifacts that remain augmented by reconstructions based on parts that were recovered.

Nevertheless it's here that you can see some of the first batteries ever created. Such as this Voltaic Pile:


And there's a good display of other batteries made by Volta using a variety of metals and electrolytes (some of them dry and some of the wet technologies):




And here's some equipment used for electrolysis to see what gases are generated at the anode and cathode.


Volta's invention came about because of Galvani's investigation of 'animal electricity' that appeared to be exhibited when frogs' legs moved when placed in contact with two different metals. Volta didn't believe Galvani's explanation of the presence of electricity in animals, but rather thought the the contact of the metals and the legs was creating electricity. In disproving Galvani he invented the battery.


Also, on display is equipment that Volta used to measure the electromotive force by balancing weights against two charged plates to measure the force required to separate them. And there's a display of capacitors (which he called 'condensors' because the electricity was thought to 'condense' on the plates).


If you visit the museum be sure to ask for the handout in English that describes all of the numbered exhibits and buy the 6 Euro English-language "Guide to the Volta Temple" which is well worth reading as it covers the history of the building and Volta's inventions in detail.


Comments

Popular posts from this blog

Your last name contains invalid characters

My last name is "Graham-Cumming". But here's a typical form response when I enter it: Does the web site have any idea how rude it is to claim that my last name contains invalid characters? Clearly not. What they actually meant is: our web site will not accept that hyphen in your last name. But do they say that? No, of course not. They decide to shove in my face the claim that there's something wrong with my name. There's nothing wrong with my name, just as there's nothing wrong with someone whose first name is Jean-Marie, or someone whose last name is O'Reilly. What is wrong is that way this is being handled. If the system can't cope with non-letters and spaces it needs to say that. How about the following error message: Our system is unable to process last names that contain non-letters, please replace them with spaces. Don't blame me for having a last name that your system doesn't like, whose fault is that? Saying "Your

All the symmetrical watch faces (and code to generate them)

If you ever look at pictures of clocks and watches in advertising they are set to roughly 10:10 which is meant to be the most attractive (smiling!) position for the hands . They are actually set to 10:09.14 if the hands are truly symmetrical. CC BY 2.0 image by Shinji I wanted to know what all the possible symmetrical watch faces are and so I wrote some code using Processing. Here's the output (there's one watch face missing, 00:00 or 12:00, because it's very boring): The key to writing this is to figure out the relationship between the hour and minute hands when the watch face is symmetrical. In an hour the minute hand moves through 360° and the hour hand moves through 30° (12 hours are shown on the watch face and 360/12 = 30). The core loop inside the program is this:   for (int h = 0; h <= 12; h++) {     float m = (360-30*float(h))*2/13;     int s = round(60*(m-floor(m)));     int col = h%6;     int row = floor(h/6);     draw_clock((r+f)*(2*col+1), (r+f)*(row*2+1),

The Elevator Button Problem

User interface design is hard. It's hard because people perceive apparently simple things very differently. For example, take a look at this interface to an elevator: From flickr Now imagine the following situation. You are on the third floor of this building and you wish to go to the tenth. The elevator is on the fifth floor and there's an indicator that tells you where it is. Which button do you press? Most people probably say: "press up" since they want to go up. Not long ago I watched someone do the opposite and questioned them about their behavior. They said: "well the elevator is on the fifth floor and I am on the third, so I want it to come down to me". Much can be learnt about the design of user interfaces by considering this, apparently, simple interface. If you think about the elevator button problem you'll find that something so simple has hidden depths. How do people learn about elevator calling? What's the right amount of