tag:blogger.com,1999:blog-19303585.post2770164480237507254..comments2020-06-06T12:42:25.287+00:00Comments on John Graham-Cumming: Squaring two digit numbers in your headUnknownnoreply@blogger.comBlogger26125tag:blogger.com,1999:blog-19303585.post-1253442335702364682017-06-06T11:38:45.595+00:002017-06-06T11:38:45.595+00:00There is another easy way to find square quick &am...There is another easy way to find square quick & Easy by chinese method<br />https://youtu.be/zFTnPvS4sioonnethttps://www.blogger.com/profile/06178267284287334465noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-11682338955925826172017-06-06T11:37:52.535+00:002017-06-06T11:37:52.535+00:00There is another easy way to find square quick &am...There is another easy way to find square quick & Easy by chinese method<br />https://youtu.be/zFTnPvS4sioonnethttps://www.blogger.com/profile/06178267284287334465noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-61153543063165901382016-02-19T09:22:22.097+00:002016-02-19T09:22:22.097+00:00kethees kethees: 26^2 = 30 * 22 + 4^2 = 660 + 16 =...kethees kethees: 26^2 = 30 * 22 + 4^2 = 660 + 16 = 676.John Graham-Cumminghttps://www.blogger.com/profile/12998100764952319513noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-85678242079871023822016-02-17T05:48:57.485+00:002016-02-17T05:48:57.485+00:00How to do 26th square in this way How to do 26th square in this way Anonymoushttps://www.blogger.com/profile/03795382491290682829noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-84591562906526978432016-02-17T05:45:54.945+00:002016-02-17T05:45:54.945+00:00How to do 26th square How to do 26th square Anonymoushttps://www.blogger.com/profile/03795382491290682829noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-58391578038672040542015-04-07T04:44:01.321+00:002015-04-07T04:44:01.321+00:00Glad I dont have trouble squaring 2 or 3 digit num...Glad I dont have trouble squaring 2 or 3 digit numbers in my headAnonymoushttps://www.blogger.com/profile/17366056218732033419noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-7930606758640547792015-03-25T21:07:17.307+00:002015-03-25T21:07:17.307+00:00http://pythonnotesbyajay.blogspot.in/2015/03/patte...http://pythonnotesbyajay.blogspot.in/2015/03/patterns-finding-squares-in-hard-way.html<br /><br />I've observed this pattern.<br />Hope it would be helpfulSUnnyhttps://www.blogger.com/profile/01273880468740136283noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-47681419115983869752013-01-19T20:19:36.231+00:002013-01-19T20:19:36.231+00:00WHAT! WHAT! WHAT! This makes no sense whatsoe...WHAT! WHAT! WHAT! This makes no sense whatsoever to me.....27 rounded to 30 easy....but after that my brain fried.....this is as clear as mud!!!Jerbearhttps://www.blogger.com/profile/13899420855921917567noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-27176184802201338762013-01-19T20:19:23.542+00:002013-01-19T20:19:23.542+00:00WHAT! WHAT! WHAT! This makes no sense whatsoe...WHAT! WHAT! WHAT! This makes no sense whatsoever to me.....27 rounded to 30 easy....but after that my brain fried.....this is as clear as mud!!!Jerbearhttps://www.blogger.com/profile/13899420855921917567noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-71294660801409982642013-01-19T20:09:34.645+00:002013-01-19T20:09:34.645+00:00WHAT! WHAT! WHAT! This makes no sense whatsoe...WHAT! WHAT! WHAT! This makes no sense whatsoever to me.....27 rounded to 30 easy....but after that my brain fried.....this is as clear as mud!!!Jerbearhttps://www.blogger.com/profile/13899420855921917567noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-46163916218706241832010-07-28T10:32:27.546+00:002010-07-28T10:32:27.546+00:00This is actually quite natural – a lot of us tend ...This is actually quite natural – a lot of us tend to think left to right, instead of the traditional right to left method. I completely agree with the post – this approach makes calculations a lot simpler and faster, and in turn, also sharpens mental math skills. But then, isn’t it built in for some people, and not for others? Anyway, that’s a separate discussion in itself!<br /><br />I love the (x-r)*(x+r)+r^2 method… this actually makes squaring in your head so much quicker, and this is one of those tricks that not many people know of. Thanks!<br /><br />Dan Sherman<br />http://www.tenmarks.comAnonymoushttps://www.blogger.com/profile/17058295870848861781noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-64722798900270512002010-04-01T05:26:31.180+00:002010-04-01T05:26:31.180+00:00There are even more math tricks and shortcuts for ...There are even more math tricks and shortcuts for mental math in a book called "Vedic Mathematics" (published by Motilal Banarsidass from India)Mohan Arunhttps://www.blogger.com/profile/08430015305389863376noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-20149882588193813532010-03-31T22:19:40.467+00:002010-03-31T22:19:40.467+00:00Saw this post via Lifehacker. Ordered the book of...Saw this post via Lifehacker. Ordered the book off Amazon, nice!Bradhttps://www.blogger.com/profile/01150288297852995487noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-91240827765509871672010-03-31T21:55:56.975+00:002010-03-31T21:55:56.975+00:00You can use this info in a trick for approximating...You can use this info in a trick for approximating square roots. I've never had to use this in a real world situation, but amongst drunk nerds, it has gained me a few bucks in bets.<br /><br />So, say for example you want to approximate the square root of 750. From your trick above, you could find that the 750 is between 27^2 and 28^2, or 729 and 784. So you know the square root of 750 is at least 27.x. <br /><br />Notice that the difference between 28^2-27^2 = (28+27)-(28-27) = 28+27 = 55. Also that the difference between are target and the lower number is 750-729 = 21. <br /><br />So if we fit a line between our two square numbers and compare the slope between our two squares and our lower square to our target, we get 55/1 = 21/x. Solve for x, you get 21/55. That's slightly more than 20/55, which is 4/11, which is .36. That 1/55 slightly less than .02, so we'd approximate our x to be .38. So then our square root approximation is 27.38.<br /><br />Checking myself, the square root of 750 = 27.3861, so I got close. This approximation always falls a tad short, especially the closer you get to 0. In fact, it's really a bad approximation anything less than 100, but it's close. It's because the curve of the parabola y=x^2 will actually go under your line you have created, and that difference gets worse the smaller x is.<br /><br />Another example, 600 is between 24^2 and 25^2 or between 576 and 625. So square root of 600 is 24.x. That x is (600-576)/(24+25 or 625-576) = 24/49. 24.5/49 is .5, so 24/49 is .5-.5/49 = .5-1/98 which is approx. .5-.01=.49. So my guess is 24.49. Actual is 24.4948.Unknownhttps://www.blogger.com/profile/12270580775833935796noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-7061403745560613992010-03-31T19:07:13.400+00:002010-03-31T19:07:13.400+00:00I'm 41 and I have always done math in my head ...I'm 41 and I have always done math in my head by breaking it down like this. Unfortunately, I didn't do well back in high school because they didn't seem to care about the answer if I didn't use their methods =(Catch lighthttps://www.blogger.com/profile/05110264377821787266noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-84024230275177281962010-03-31T08:43:47.873+00:002010-03-31T08:43:47.873+00:00I did your 27 squared differently.
I noted that 2...I did your 27 squared differently.<br /><br />I noted that 27 = 3x9 so I squared 3 and 9 to get 9 and 81. Multiplying together gave 9 x 80 = 720 and 9 x 1 = 9 result 729. Perhaps 5 seconds thought.<br /><br />Prime factoring usually brings the numbers back into the times tables range - barring larger primes being present.Charles Woodhttps://www.blogger.com/profile/05262427111752864275noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-68935286383079141752010-03-30T23:08:55.038+00:002010-03-30T23:08:55.038+00:00Hmm, now i feel quite proud because in Poland such...Hmm, now i feel quite proud because in Poland such things are taught in primary school :)bigfunhttps://www.blogger.com/profile/17108637062610918062noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-86230740689478352522010-03-29T17:53:47.728+00:002010-03-29T17:53:47.728+00:00I find that my method is simpler for me when I squ...I find that my method is simpler for me when I square 2-digit numbers. Not sure it's like that for everyone.<br /><br />When I square 2-digit numbers I always round down to the nearest 10. Then, add the double of the criss-cross product. And, add the final square.<br /><br />Examples:<br />27*27<br />Round down to 20*20 = 400.<br />Criss-cross is 20*7 = 140.<br />Double it = 280. Now, we have 400+280 = 680, and we just need to add the final square = 7*7 = 49.<br /><br />For me, addition is always easiest, and doubling something is also very natural.<br /><br />96*96 = 8100 + Double(540) + 36 = 8100 + 1080 = 9180. Add 36 = 9216.<br /><br />It probably depends on the person which method is simpler. But, this is the way I've always done it.Brute Forcehttps://www.blogger.com/profile/10214183612902971524noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-81971843988038252172010-03-29T16:42:32.345+00:002010-03-29T16:42:32.345+00:00Ever heard of Arthur Benjamin? He is a mathemagici...Ever heard of <a href="http://en.wikipedia.org/wiki/Arthur_T._Benjamin" rel="nofollow">Arthur Benjamin</a>? He is a mathemagician, which probably describes best what he does: magic tricks using maths. Lots of impressive calculations by head, but most of them are based on tricks like this.<br /><br />My favourite one -- actually, the only one I remember from the presentation I saw 8 years ago -- is how to remember really larger numbers: phone numbers, digits of pi, etc. Assign each digit to a vowel sound (e.g. 0 = long o, 1 = short a etc.) and then make sentences of which the vowel sounds match the digits of the number you want to memorize. Never needed to use that in practise though.martijnhttps://www.blogger.com/profile/03463307000398178175noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-63170539285443869512010-03-29T15:28:27.524+00:002010-03-29T15:28:27.524+00:00Oddly enough, I often do mental arithmetic the wro...Oddly enough, I often do mental arithmetic the wrong way round as well. The cognitive scientists reckon that working memory (like RAM) is the limiting factor on your performance, so perhaps it makes sense to minimise how much of it you're using. Not that I intentionally set out to achieve that.Anonymousnoreply@blogger.comtag:blogger.com,1999:blog-19303585.post-88697892415220212312010-03-29T13:25:31.393+00:002010-03-29T13:25:31.393+00:00Any two digit number ending in 5 is easy.
The ans...Any two digit number ending in 5 is easy.<br /><br />The answer always ends in 25, and the first part is handled by taking the first number and multiplying it by the number higher.<br /><br />So, 95x95 is 9025. 9 * 10 = 90 and put 25 on the end.Jasonhttps://www.blogger.com/profile/07422374902421619115noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-64933481566125874802010-03-29T13:10:29.268+00:002010-03-29T13:10:29.268+00:00Oh, and in the 10x+y example, if you want to deal ...Oh, and in the 10x+y example, if you want to deal with a special case where the last digit is 5 (y=5), the squaring becomes simpler still.<br /><br />100x(2) + 2*10x*5 + 5(2)<br />= 100x(2) + 100x + 25<br />= 100x(x + 1) + 25<br /><br />So, the last digit is always 25 since there's an offset of 100 contributed by the first digit. The first digit is x(x+1), which is very simple to compute.<br /><br />For example, 25 squared. 2x3 = 6. The answer is 625.<br />Another example: 85 squared. 8x9 = 72. Answer = 7225.Rakesh Paihttps://www.blogger.com/profile/00328152982823663876noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-90897183175481389882010-03-29T13:05:01.740+00:002010-03-29T13:05:01.740+00:00I've used a similar technique for squaring two...I've used a similar technique for squaring two digit numbers really easily.<br /><br />A two digit number can be represented as 10x + y, where x and y are the first and second digits. Squaring 10x + y gives us 100x(2) + 2*10xy + y(2). This is very simple now to compute. The result of y(2) will always be the last digit since the first two numbers have been <i>offset</i> by their multiplications by 10. The second digit will always be 2xy since it's offset by 10. The first digit will be x(2) since it's offset by 100.<br /><br />Example: say 13 squared. 3 is the last digit, so the last digit of the square will be 9. 2x1x3 = 6, which will be digit before 9, giving us 69 so far. 1 squared is 1, and the answer is 169.<br /><br />Another example: 57 squared. 7 squared is 49, so 9 is the last digit, and we carry 4 over. 2x5x7 = 70. We add the carried over 4 to get 74. So far we have 49 then, with 7 carried over. 5 squared is 25. +7 to give 32. The answer is 3249.Rakesh Paihttps://www.blogger.com/profile/00328152982823663876noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-73259020632569656132010-03-29T12:54:41.848+00:002010-03-29T12:54:41.848+00:00Google Trachtenberg and Mathematics, something sim...Google Trachtenberg and Mathematics, something similar.Unknownhttps://www.blogger.com/profile/17509145565293041933noreply@blogger.comtag:blogger.com,1999:blog-19303585.post-58143502222623348412010-03-29T11:50:39.119+00:002010-03-29T11:50:39.119+00:00you have something similar to this in Vedic Mathem...you have something similar to this in <a href="http://www.amazon.com/Vedic-Mathematics-Bharati-Krsna-Tirthaji/dp/8120801644/ref=sr_1_1?ie=UTF8&s=books&qid=1269863396&sr=8-1" rel="nofollow">Vedic Mathematics</a>ramanrhttps://www.blogger.com/profile/08122371205909541554noreply@blogger.com